bet365官方网站-bet365集团在线_沙龙百家乐代理_新全讯网网址112 (中国)·官方网站

首頁 > 學術講座 > 正文
Analytical expressions of copositivity for 4th order symmetric tensors
發布時間:2019-11-08    

報告人: 宋義生

報告人單位: 河南師范大學

時間: 2019-11-09 11:00-12:00

地點: 北洋園校區32-B106

In particle physics, scalar potentials have to be bounded from below in order for the physics to make sense. The precise expressions of checking lower bound of scalar potentials are essential, which is an analytical expression of checking copositivity and positive definiteness of tensors given by such scalar potentials. Because the tensors given by general scalar potential are 4th order and symmetric, our work mainly focuses on finding precise expressions to test copositivity and positive definiteness of 4th order tensors in this paper. First of all, an analytically sufficient and necessary condition of positive definiteness is provided for 4th order 2 dimensional symmetric tensors. For 4th order 3 dimensional symmetric tensors, we give two analytically sufficient conditions of (strictly) cpositivity by using proof technique of reducing orders or dimensions of such a tensor. Furthermore, an analytically sufficient and necessary condition of copositivity is showed for 4th order 2 dimensional symmetric tensors. We also give several distinctly analytically sufficient conditions of (strict) copositivity for 4th order 2 dimensional symmetric tensors. Finally, we apply these results to check lower bound of scalar potentials, and to present analytical vacuum stability conditions for potentials of two real scalar fields and the Higgs boson.

學術講座
洛克百家乐的玩法技巧和规则| 上海百家乐官网的玩法技巧和规则 | 邯郸百家乐官网园怎么样| 百家乐赌场论坛| 雅江县| 百家乐赌牌技巧| 百樂坊娱乐场| 机器百家乐作弊| 伯爵百家乐官网娱乐场| 大发888下载官网| 澳门百家乐加盟| 电子百家乐| 百家乐官方游戏下载| 米脂县| 真人百家乐视频| 百家乐官网赌场在线娱乐| 大发888娱乐场下载com| 现金百家乐伟易博| 最好的百家乐官网好评平台都有哪些 | 真人百家乐的玩法技巧和规则| 信誉百家乐官网博彩网| 大发888手机登录平台| 888百家乐官网的玩法技巧和规则| 百乐门国际网上娱乐| 百家乐现金网平台排名| 百家乐官网智能软件| 优博在线娱乐| 百家乐投注平台信誉排行| 百家乐官网9点直赢| 大发888案件| 百家乐游戏试| 棋牌评测| 太阳城地址| 百家乐桌小| 网上百家乐官网公司| 百家乐官网赌场策略论坛| 金狮国际| 大发888官方网站登录| 澳门百家乐图形| 澳门百家乐赌客| 百家乐视频游365|